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Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius
(uS/cm at 25°C).
Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L)

or micrograms per liter (ug/L).

vii






Characterization of Big Chino Subbasin Hydrogeology
near Paulden, Arizona, Using Controlled Source Audio-
Frequency Magnetotelluric Surveys

By Jamie P. Macy, Bruce Gungle, and Jon P. Mason

Abstract

The Big Chino subbasin is located in central-northwest
Arizona in the transition zone between the Colorado Plateau
and the Basin and Range Province. The controlled source
audio-frequency magnetotelluric (CSAMT) geophysical
method, a low-impact, non-intrusive, electrical resistance
sounding technique, was used to evaluate the subsurface
hydrogeology of the southern third of the Big Chino subbasin.
The Big Chino subbasin is a northwest-trending, late Tertiary
graben bordered by the Big Chino Fault along its northeast
flank where there is as much as 1,100 meters of displace-
ment. The main water-bearing stratigraphic unit of the basin is
Tertiary alluvial-fill sediment. The Devonian Martin Forma-
tion provides water to wells near Drake and the Mississippian
Redwall Limestone provides water to wells east of the basin
and in the Paulden area.

The purpose of the CSAMT surveys was to improve the
conceptual model of the aquifer by constraining the basin
geometry and identifying stratigraphic units and their subsur-
face extents. CSAMT methods were used to map the subsur-
face along 100 kilometers (62 miles) of survey lines across
the southern third of the subbasin. Of 21 survey lines, 14
were west of the town of Paulden and another 7 were east of
Paulden. Data were cleaned and prepared for entry into Zonge
SCS2D software and then inverted to provide a two-dimen-
sional resistivity profile for each survey line. Final inversion
models representing the best fit to measured data were com-
pared to driller’s logs or borehole data where present.

Data from the CSAMT lines west and north of Paulden
are consistent with thicker alluvial basin deposits that range
from 100 meters thick to a few hundred meters thick. Data
from the CSAMT lines east of Paulden are consistent with
thinner alluvial and basalt deposits overlying Paleozoic Martin
Formation and Redwall Limestone, Tapeats Sandstone, and
Precambrian granite and schist.

Introduction

The Big Chino Valley® of north-central Arizona (fig .1)
was named by Amiel Weeks Whipple in 1853. He referred
to it as “Val de Chino,” claiming that “chino” was the local
Mexican name for grama grasses (Bouteloua sp.), which grew
throughout the valley (Barnes, 1988). Whipple described the
grass of Val de Chino as “luxuriant.” Even today no paved
roads or major housing developments are found in most of
the Big Chino Valley, and the grassland retains its ecosystem
function as evidenced by the large population of free-ranging
pronghorn antelope. The dominant activity in the Big Chino
Valley today is ranching, and the grasslands remain among the
most extensive and highest quality in the Verde River water-
shed (Graham, 2007), as they were when the Whipple expe-
dition first arrived in 1853. Nonetheless, population growth
across the adjacent 485-square-mile Prescott Active Manage-
ment Area (PrAMA) remains high, having more than doubled
from 1985 to 2005 (Rothman and Mays, 2014) with a continu-
ing projected annual increase of about 2 to 3 percent per year
(Collins and Bolin, 2007; Marder, 2009; Munoz-Erickson and
others, 2010).

In recent years, Prescott (population 39,843 in 2010),
Prescott Valley (population 38,822 in 2010), and Chino Valley
(population 10,817 in 2010) (U.S. Census Bureau, 2018) have
all had plans to pump from the Big Chino subbasin aquifer,
as allowed by Arizona groundwater law, but as of 2018 no
pumping has taken place. Downstream users of Verde River
water, including Phoenix-area water provider Salt River
Project, Cottonwood (population 11,265 in 2010), Camp Verde
(population 10,873 in 2010), and Clarkdale (population 4,097
in 2010) (U.S. Census Bureau, 2018), and the Yavapai-Apache

! The Big Chino Valley is also referred to as the “Chino Valley” in the lit-
erature. In order to limit confusion with the nearby town of Chino Valley, “Big
Chino Valley” will be used here.
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Nation (750 tribal members living in five tribal communities
in Yavapai County in 2014; Yavapai-Apache Nation, 2018) are
concerned that Big Chino subbasin groundwater withdrawals
will eventually reduce the flow in the Verde River and water
availability.

The upstream users’ right to pump derives from the Ari-
zona Groundwater Management Act (Arizona State Legisla-
ture, 1980). The Prescott Active Management Area (PrAMA)
was designated in the Groundwater Management Act as one of
four (now five) Active Management Areas in Arizona (Ari-
zona State Legislature, 1980). In an active management area,
withdrawal, transportation, and use of groundwater is regulated
by the Groundwater Management Act. In addition, specific
Active Management Areas may have additional regulations or
authorizations that are unique.

In exchange for Central Arizona Project (CAP) water
originally allocated to the PrAMA as well as a means to help
settle local tribal water rights claims, certain government enti-
ties including the City of Prescott were authorized by a 1991
amendment to the Groundwater Management Act to annually
pump and transport groundwater from the Big Chino subbasin
into the PrAMA. The City of Prescott has statutory rights to
pump up to 14,000 acre-feet of groundwater annually from the
Big Chino subbasin. The Director of Arizona Department of
Water Resources issued a final determination of this right in
November 2009 that recognized 8,076.4 acre-feet as the total
annual volume to which the City of Prescott is entitled (Ari-
zona State Legislature, 1980; Arizona Department of Water
Resources, 2014a,b,c). Additional groundwater of up to 3 feet
per acre pumped from retired, historically irrigated acres is
also legally available to municipalities in the PrAMA, although
the total volume of such groundwater that a city or town can
transport from the Big Chino subbasin has yet to be determined
(Marder, 2009; Arizona Department of Water Resources,
2014b, 2014c; Arizona State Legislature, 1980).

The terminology used in this study follows Blasch and
others (2006). In particular, “Big Chino subbasin” refers to the
entire Big Chino drainage system including the valley floor and
the bounding mountains where they drain into the Big Chino
Wash. “Big Chino Valley” refers to the valley proper and only
the immediately adjacent high-altitude areas. In addition, the
structural basin is basically the floor of the Big Chino Valley,
bounded by faults adjacent to Big Black Mesa to the northeast,
primarily the Big Chino Fault, and a system of faults to the
southwest along the Juniper Mountains and Williamson Valley.
The geophysical surveys conducted for the current study took
place on the Big Chino Valley floor, within the structural basin.

The Big Chino subbasin is 1,850 square miles (mi?) and
includes Big Chino Valley, Williamson Valley, and Walnut
Creek (fig. 1; Blasch and others, 2006; Wirt and others, 2005;
Arizona Department of Water Resources, 2014d). The Big
Chino Valley is bounded by the Juniper and Santa Maria
Mountains on the west side of the valley, the Granite Moun-
tains on the south side, and Big Black Mesa and Bill Williams
Mountain on the east side as well as the southern part of the
Coconino Plateau to the north (Wirt and others, 2005; Blasch
and others, 2006; Arizona Department of Water Resources,

Purpose and Scope 3

2014d). Big Chino Valley is bisected from northwest to south-
east by Big Chino Wash. The northwestern extent of the Big
Chino subbasin is 13 miles (mi) north of Seligman and the
southeastern extent is about 50 mi southeast of Paulden (fig.
1). The so-called “headwaters,” a series of springs to the east
of Paulden, is where the Verde River begins. Wirt and others
(2005), Blasch and others (2006), and Pool and others (2011)
all provide comprehensive summaries of previous studies of
the Verde River watershed including the Big Chino subbasin,
and the reader is referred there for research that provides addi-
tional hydrogeological context for the Big Chino subbasin.
This CSAMT study of the Big Chino subbasin better
defines aquifer and lithologic extents (in particular sands and
gravels versus silts and clays), which contribute to aquifer stor-
age properties. The information provided here will improve the
accuracy of distributions of hydraulic and storage properties
in groundwater flow models of the Big Chino subbasin, which
can then be used to estimate capture rates by groundwater
withdrawals.

Purpose and Scope

This report describes a series of controlled-source audio-
frequency magnetotelluric (CSAMT) electromagnetic profiles
of the Big Chino subbasin that were obtained from surveys
conducted from 2015 to 2017. By surveying the electri-
cal properties of the subsurface using CSAMT techniques,
geophysicists are able to infer stratigraphic and structural
characteristics of the Big Chino subbasin, and thus improve
understanding of the total hydrogeologic system. Twenty-one
CSAMT surveys were conducted across the southern half of
the Big Chino subbasin (fig. 2). The results of these surveys
were used to improve the knowledge of lateral extent and
depth of aquifer structure and the distribution of major aquita-
rds (silt and clay layers and non-fractured volcanic intrusions)
across the southern part of the Big Chino subbasin relative to
major water-bearing intervals (sands and gravels), as well as
the underlying extents of limestone aquifers and the non-aqui-
fer crystalline rock. This information may be useful in future
groundwater modeling efforts to better understand the timing
and variations in groundwater discharge to the Verde River, in
response to future variations in groundwater withdrawals and
recharge.

Previous Investigations

Investigations directly relevant to the hydrology of the
Big Chino Valley area include Wallace and Laney (1976),
who produced water-level maps in the southern part of the Big
Chino subbasin, including Williamson Valley, that were subse-
quently updated by Schwab (1995). The U.S. Geological Sur-
vey (USGS) conducted seepage investigations along the Verde
River from near the mouth of Granite Creek to Camp Verde
in June 1977 (U.S. Geological Survey, 1979; Owen-Joyce and
Bell, 1983), and from Granite Creek to Sycamore Canyon in
November 1999 and June 2000 (Wirt and others, 2005). As



4 Characterization of Big Chino Subbasin Hydrogeology Using CSAMT Surveys

112°40'

35°

34°
55'

Map area

ARIZONA

34°
50' [

Base map data from Google, 2018
NAD 1927 UTM Zone 12N

112°30' 112°20°

EXPLANATION

Big Chino Valley study area
Area 1
Area 2
Area 3

Controlled source audio-frequency
magnetotelluric (CSAMT) survey line

1ID MILES

o—To0o

I T
8 10 KILOMETERS

Figure 2. Map of the study area in the Big Chino subbasin showing the three individual areas of the controlled source audio-
frequency megnetotelluric (CSAMT) surveys and the 21 CSAMT survey lines.

part of a hydrology and hydrogeologic study of Big Chino Val-
ley, Ewing and others (1994b) conducted a seepage investiga-
tion in July 1991 from about half a mile above Granite Creek
to Clarkdale. Other Verde River seepage investigations that
begin at Clarkdale (for example, U.S. Geological Survey,
1980; Garner and Bills, 2012) and continue downstream are
less relevant to the volume of groundwater discharging from
the Big Chino subbasin.

Owen-Joyce and Bell (1983) described the geology,
base flow, water chemistry and groundwater budget of the
upper Verde River (parts of the upper and middle Verde River
watersheds of Blasch and others, 2006), and provided a map
of the hydrologic conditions. Freethey and Anderson (1986)
included the Big Chino subbasin on one of their 72 maps
that describe the predevelopment hydrologic conditions of
southwest alluvial basins. Wilson (1991, sheet 1) compiled

groundwater pumping in the Big Chino subbasin from 1950

to 1985. The Bureau of Reclamation conducted an extensive
geologic framework investigation of the Big Chino Valley that
included a wide range of geophysical techniques (Ostenaa

and others, 1993; Ewing and others, 1994a) and an evalua-
tion of groundwater and surface water supplies that included a
seepage run in the uppermost Verde River (Ewing and others,
1994b). That study was undertaken with the City of Prescott
in order to examine the relation between groundwater in the
Big Chino subbasin and base flow in the Verde, and resulted in
two calibrated, steady state models (Ewing and others, 1994b).
Wirt and Hjalmarson (2000) evaluated the source of the upper
Verde River springs that provide base flow to the Verde River
from Granite Creek to Perkinsville; they determined the source
to be mainly Big Chino subbasin groundwater. Navarro (2002)
constructed a two-layer, three-aquifer groundwater flow model



of the Williamson Valley section of the Big Chino subbasin.
Wirt and others (2005) described the geologic framework of
the upper Verde River watershed based on a synthesis of the
existing geologic, geophysical, hydrologic, and geochemical
data. Blasch and others (2006) described the hydrogeologic
framework, surface-water flow systems, and groundwater
flow systems of the upper Verde River watershed including
the Big Chino subbasin. Pool and others (2011) developed a
three-layer numerical groundwater flow model of the primary
aquifers of northern and central Arizona. This included the
entire Big Chino subbasin.

Some geophysical work has previously been conducted
in the Big Chino subbasin. Ostenaa and others (1993) of the
Bureau of Reclamation conducted 21 resistivity soundings
intended to delineate the extent of the clay and silt sediments
of the Big Chino subbasin basin fill and to develop a general
sense of the electrical properties and structure of the subba-
sin. Four profiles were generated from these soundings: one
along the axis of the Big Chino Valley that extends about 20
kilometers (km) through our areas 2 and 3 (fig. 1), and the
other three (about 6 to 15 km in length) perpendicular to the
valley axis. Two of those profiles were in our area 2 and one
in area 3 (fig. 1).

A seismic reflection survey was also conducted by Oste-
naa and others (1993), and they delineate four stratigraphic
horizons using this method, including the top of the Devonian
Martin Formation, as well as a number of faults. In addition,
they conducted borehole logging in 15 drill holes in the Big
Chino subbasin to better characterize the lithologies in the
region and to obtain quantitative values of resistivity and
seismic velocity to assist with interpretation of the profiles
obtained from the surface geophysical surveys.

Frank (1984), Water Resources Associates (1989), Dater
and others (1999), and Langenheim and others (2000; 2002;
2005) all conducted bouguer gravity anomaly surveys in the
Big Chino subbasin. Langenheim and others (2005) of the
U.S. Geological Survey analyzed aeromagnetic survey data
and gravity data to evaluate geologic structure in the upper
Verde River watershed including the Big Chino and Little
Chino subbasins. Volcanic centers down-gradient of springs,
paleochannels subsequently filled with basalt, and a pre-
dominantly northeast- to north-striking structural grain in the
Proterozoic basement rocks were among their many findings.
They were also able to better characterize known fault sys-
tems and to identify previously unknown structural basins.

Physiography

The study area is located in the Transition Zone, the
region between the Colorado Plateau and Basin and Range
Province (fig. 3). Also sometimes referred to as the Central
Highlands, the Transition Zone makes up about 15 percent
of Arizona’s total land area, but it is responsible for about
50 percent of the streamflow that originates in Arizona
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(Montgomery and Harshbarger, 1989). The Transition Zone
contains topographic elements that were inherited from both
the Colorado Plateau Province and the Basin and Range
Province. Northwest-trending monoclines that were formed
on the Colorado Plateau during the Laramide deformation

are present in the Transition Zone, along with escarpments
formed by normal faulting that occurred during Basin and
Range extension. The Basin and Range extension was the last
major stage of Transition Zone formation. It occurred in the
Middle Tertiary, possibly in response to the subduction of a
crustal spreading ridge and its associated mantle plume on the
western plate margin of the North American continent (Dixon
and Farrar, 1980). Subduction of the mantle plume is thought
to have caused continental crust of the Basin and Range Prov-
ince to stretch and thin by as much as 100 percent through a
combination of high and low angle normal faulting (Spencer
and Reynolds, 1989). The thinning of the Basin and Range
continental crust lead to its subsidence in elevation relative to
the Colorado Plateau, resulting in the final phase of Transition
Zone formation. Normal faulting in the study area related to
the Basin and Range extension deformed the bedrock into a
northwest-trending graben structure that defines present-day
Big Chino Valley (Blasch and others, 2006).
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Figure 3. Map of Arizona showing its physiography, notably the
Transition Zone region between the Colorado Plateau and the
Basin and Range Province. The location of the three parts of our
study area are shown in the north-central part of the Transition
Zone.
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Geology

Rocks and sediments found in the study area are a prod-
uct of the long and complex geologic history of the region.
According to DeWitt and others (2008), some basement rocks
in the study area are older than 1.7 billion years (Ga). The
rocks and sediment present today in the study area do not,
however, provide a complete timeline of geologic history.
There are numerous gaps in the geologic record represent-
ing periods of either non-deposition or erosional events that
removed earlier deposits.

Precambrian Formations

DeWitt and others (2005) reported that granite is found
under much of Chino Valley and that from Sullivan Buttes to
north of Paulden metasedimentary rocks are in contact with
the granite. Large outcrops of Precambrian rocks occur several
miles to the west of Big Chino Wash with smaller outcrops
along Big Black Mesa and the Verde River (DeWitt and others
2008; figs. 4 and 5).

Blasch and others (2006) reported that in general, Pre-
cambrian rocks in the upper and middle Verde watersheds do
not store enough water to be productive aquifers. An exception
to this outside the study area is the fractured and weathered
granite between the Little Chino subbasin and Williamson
Valley, where hundreds of wells produce water from granite
(Blasch and others, 2006). In the adjacent Little Chino and
Agua Fria subbasins, Wilson (1988) and Corkhill and Mason
(1995) concluded that the crystalline or foliated igneous and
metamorphic basement rocks are generally dense, nonporous,
and nearly impermeable (figs. 4 and 5).

Paleozoic Formations

DeWitt and others (2008) described the Tapeats Sand-
stone as reddish-brown sandstone and conglomerate ranging in
thickness from 15 to 85 meters (m). Blasch and others (2006)
reported that little is known about the water-bearing proper-
ties of the Tapeats Sandstone in the upper and middle Verde
watersheds due to a lack of well data, but Wirt and others
(2005) reported that low permeability in the Tapeats is due
to its strong cementation. The Tapeats Sandstone outcrops
near the study area along much of the southwest side of Big
Black Mesa, in a band along the southern base of the Juniper
Mountains near Walnut Creek, and in areas of the Santa Maria
Mountains (DeWitt and others, 2008; figs. 4 and 5).

DeWitt and others (2008) described the Bright Angel
Shale as gray shale and minor dolomite. The shale outcrops
near the study area in a thin band along the south and east
sides of the Juniper Mountains where Middleton and Elliot
(2003) reported it to be only a few feet thick (figs. 4 and 5).
The Bright Angel Shale is a confining unit and forms the
effective base of the Big Chino aquifer system in places (Pool
and others, 2011).

DeWitt and others (2008) described the Martin Formation
as dark-gray dolomite, minor limestone, and sandy siltstone

with a thickness of about 105 to 145 m. The Martin Formation
is exposed along the Verde River in study area 1, just outside
the study area along the southwest side of Big Black Mesa,
and in a band around the Juniper Mountains (figs. 4 and 5).
Wirt and others (2005) reported that the formation has moder-
ate overall permeability with abundant northwest-striking
high-angle joints near its base and locally includes solution
cavities.

DeWitt and others (2008) described the Redwall Lime-
stone as gray limestone with minor chert. They further stated
that it has extensive karst development and collapse features,
and a thickness ranging from 75 to 85 m. The limestone is
exposed in a few locations within study area 1, and just out-
side of the study area on Big Black Mesa and in the Juniper
Mountains (figs. 4 and 5). Wirt and others (2005) reported that
the formation has high overall permeability.

The Schnebly Hill, Hermit, and Supai Formations were
mapped as an undivided unit by DeWitt and others (2008)
in an area adjacent to the Big Chino subbasin (figs. 4 and 5).
In study area 1, the Supai Formation was mapped by DeWitt
and others (2008) as its own unit, but for simplicity, we have
combined these two map units into an undivided unit, PIPss,
in figures 4 and 5. DeWitt and others (2008) described the
undivided unit as a 330-m-thick section of sandstone, siltstone,
and minor dolomite and conglomerate, and they map outcrops
on the north side of Big Black Mesa, in the Juniper Mountains,
and just to the south and southwest of Picacho Butte (fig. 4).
These units are absent in the few available lithologic logs
from wells that penetrate the late Paleozoic strata in Big Chino
Valley.

The Kaibab Limestone and Coconino Sandstone of late
Paleozoic age are presumed to be absent from the study area.
There are no outcrops of these formations mapped in the study
area and both units are missing from available lithologic well
logs, although an outcrop of Coconino Sandstone was mapped
by Dewitt and others (2008) on the south side of Picacho Butte
outside of the study area (fig. 4). It is less clear whether late
Paleozoic units below the Coconino Sandstone (Schnebly
Hill, Hermit, and Supai Formations) are present in Big Chino
Valley. These rocks are present in the higher terrain surround-
ing the valley, but absent in the few available lithologic logs
from wells that penetrate the late Paleozoic strata in the valley.
Cross sections of Big Chino Valley presented by Blasch and
others (2006) and by Ostenaa and others (1993) do not include
late Paleozoic formations.

Cenozoic Units

During the Tertiary, widespread volcanism occurred in
the study region, mainly concentrated in two periods (Blasch
and others 2006; DeWitt and others 2005). The first period
of volcanism, during the middle Miocene prior to Basin and
Range extension (Blasch and others, 2006; Coney and Reyn-
olds, 1977; Spencer and Reynolds, 1989), was marked by
the eruption of andesite and lati-andesite and the region was
subsequently extended by low-angle faulting and rotation
(Blasch and others, 2006). Wirt and others (2005) noted that
“lati-andesite flows contain intersecting cooling fractures and



joints that give the lati-andesite a moderate overall permeabil-
ity,” but that “intrusive centers of lati-andesite have very low
permeability.” Blasch and others (2006) reported that where
impermeable, lati-andesite can act as a barrier to groundwater
flow. Outcrops of lati-andesite west of Big Chino Valley sug-
gest continuity of the volcanic field across much of Williamson
Valley Wash and some of southern Big Chino Wash. Near Big
Chino Valley andesite or lati-andesite outcrops in the Sullivan
Buttes volcanic field, along Walnut and Pine Creeks, and in the
Juniper Mountains (DeWitt and others, 2005) (fig. 4).

The second period of volcanism occurred during and after
Basin and Range extension and was dominated by alkaline
basalts (Spencer and Reynolds, 1989; van Wijk and oth-
ers, 2010; Sine and others, 2008). DeWitt and others (2005)
reported that from about 66 to 4 Ma extensive basalt flows
erupted along the Mogollon Rim and flowed into Big Chino
Valley and the Verde River watershed east of Paulden. DeWitt
and others (2005) further reported that sources of some of the
flows were probably local cinder cones. Wirt and others (2005)
reported that the columnar jointing that resulted from the
cooling of these flows explains why the basalt has such high
permeability. Basalt outcrops in much of area 1 and underlies
younger sediments in a few well logs in areas 2 and 3 (DeWitt
and others, 2008).

During the Tertiary, normal faulting around the study area
related to Basin and Range extension resulted in the formation
of Big Chino Valley. The topographic relief between the newly
formed valley and surrounding uplands led to the deposition
of a thick Tertiary sedimentary section in the valley. DeWitt
and others (2008) mapped a Tertiary mixed sedimentary unit
comprised of siltstone, sandstone, and minor conglomerate
that extends into our area 3 from the west along Walnut Creek.
This Tertiary sedimentary unit is derived from the Santa Maria
Mountains to the southwest and in southern exposures contains
thin basalt flows (DeWitt and others, 2008). Based on drilling
and gravity data reported by Langenheim and others (2002),
it appears this sedimentary unit thickens to as much as 800 m
in Williamson Valley Wash near Tucker (DeWitt and others,
2008). Drill hole data indicate that Tertiary age sediments occur
under much of the Quaternary deposits in Big Chino Valley
(Dewitt and others, 2008).

DeWitt and others (2005) also described Tertiary playa
deposits in Big Chino Valley. These deposits do not outcrop at
the surface and are only known from well logs and drill cut-
tings. The extent of the deposits are not known, but DeWitt and
others (2005) documented them in three drill holes separated
by several miles. The thickness of the deposits varies from less
than 30 m in a drill hole west of Big Chino Wash to about
500 m in a drill hole near the Big Chino Fault (DeWitt and oth-
ers, 2005). The Arizona Department of Water Resources (2000)
reports Tertiary basin fill as the major water-bearing unit in
Big Chino and Williamson Valleys.

Quaternary Deposits

Quaternary deposits in the study area consist of alluvial
fan deposits (fanglomerate), fine-grained alluvial sediments,
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terrace gravels, gravel, and recent stream alluvium. The origi-
nal Quaternary map units of DeWitt and others (2008) have
been simplified in figures 4 and 5 to combine units that are
similar in composition. Blasch and others (2006) report that
these units are typically highly permeable and locally yield
water to shallow wells for domestic and agricultural purposes.

Structure

The structure of the study area is strongly related to the
development of the Mogollon Rim at the southern edge of
the Colorado Plateau and the normal faulting that created the
Basin and Range Province farther south. The Mogollon Rim
is a large escarpment that formed as a result of erosion and
normal faulting (Elston and Young, 1991; Pierce and oth-
ers, 1979). Elston and Young (1991) report that south of the
Mogollon Rim, near-horizontal strata of lower parts of the
Paleozoic section occur as erosional remnants. Some of these
strata in the study area still have a northeasterly tilt inher-
ited from the Colorado Plateau structure (DeWitt and others,
2005). Elston and Young (1991) concluded that the Transition
Zone of central Arizona is a structural extension of the Colo-
rado Plateau from which Paleozoic strata have been largely
removed, exposing underlying Proterozoic basement. In addi-
tion, northwest-trending monoclines such as the Limestone
Canyon monocline exposed on Big Black Mesa are reported
by Davis (1978) to be the result of Laramide deformation of
the Colorado Plateau.

Big Chino Valley is a “northwest-trending late Ter-
tiary graben that is bordered on the northeast by the Big
Chino Fault.” The fault has at least 1,100 m of displacement
in places and “decreases in displacement to the southeast
and dies in a series of horsetail splays north of Paulden.”
(DeWitt and others, 2005). Wirt and others (2005) show that
“displacement along the fault places basin deposits against
granitic basement rock, creating a relatively impermeable
boundary along most of Big Black Mesa, except where there
is little displacement against Paleozoic carbonate rocks north
of Paulden.” Normal faults on the southwest side of Big
Chino Valley are not as obvious and have less displacement,
except north of Sullivan Buttes where several small faults are
visible with various degrees of displacement (DeWitt and oth-
ers, 2005). DeWitt and others (2005) conclude that “the Big
Chino basin probably started to form at about 810 Ma. By
6 Ma, parts of the basin had a topographic form similar to its
present-day shape” (fig. 4).

The boundary between study areas 1 and 2 is the approx-
imate eastern boundary of the Big Chino Valley graben. The
graben ends at a northeast-trending normal fault east of High-
way 89. West of this fault, the Paleozoic formations are lower
in elevation and buried under thick Cenozoic sediments and
volcanic units. East of the fault, Paleozoic formations occur
at the surface or below Tertiary volcanic rock (fig. 4). The
Paleozoic formations in area 1 have a gentle northeasterly
dip, probably related to Laramide deformation (DeWitt and
others, 2005).
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Purpose and Scope

EXPLANATION
Quaternary alluvium
Quaternary fanglomerates, colluvim, and sedimentary breccia
@ Quaternary sediment, gravels, and terrace gravels

Tertiary andesite

Tertiary basalt

Tertiary lati-andesite
Tertiary volcanic rocks
Tertiary sedimentary rocks

uTs Tertiary sedimentary rocks and interbedded sedimentary and volcanic rocks

Lower Permian Coconino Sandstone

Lower Permian and Upper Pennsylvanian Schnebly Hill, Hermit, and Supai
Formations, undivided

Mississippian Redwall Limestone

Devonian Martin Formation

Mississippian Redwall Limestone and Devonian Martin Formation, undivided

Devonian Martin Formation and Cambrian Tapeats Sandstone of Tonto Group,
undivided

Cambrian Bright Angel Shale of Tonto Group

Cambrian Tapeats Sandstone of Tonto Group

Cambrian Bright Angel Shale and Tapeats Sandstone of Tonto Group,
undivided

Precambrian crystalline and metasedimentary basement rock

Contact—Dashed where approximately located

Fault—Dashed where approximately located; dotted where concealed by
younger units. Bar and ball on downthrown side where relative
movement known

———— Quaternary fault—Well constrained (U.S. Geological Survey and Arizona
Geological Survey, 2018)

——— Quaternary fault—Moderately constrained (U.S. Geological Survey and
Arizona Geological Survey, 2018)

—I— Anticline
+ Monocline

+ Syncline

Dike
———— Ring dike—hburied, location approximate
-2, CSAMT survey lines

*  Volcanic center

*  Buried volcanic center

Figure 4. Geologic map of study area simplified from DeWitt and others
(2008) with the controlled-source audio-frequency magnetotelluric (CSAMT)
survey lines collected as part of this study.
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Methods

This study uses surface geophysical surveys to develop
a better understanding of the extent and lithologies of the
Big Chino basin fill and carbonate aquifers. The method
best suited to this study is controlled source audio-frequency
magnetotellurics (CSAMT) because of the relatively fast data
acquisition, ability to survey large areas, and ability to identify
faults and stratigraphic units. Existing well logs and geophysi-
cal logs, water-level data, and other hydrogeologic information
were used to constrain the subsurface electrical models.

Controlled Source Audio-Frequency
Magnetotelluric Survey (CSAMT)

CSAMT is an electromagnetic sounding technique that
has proven useful for hydrogeological and groundwater stud-
ies (Zonge, 1992). CSAMT is a low-impact, nonintrusive
technique that has been used extensively by the minerals, geo-
thermal, hydrocarbon, and groundwater exploration industries
since 1978 when CSAMT equipment systems first became
commercially available (Zonge, 1992). CSAMT can provide
electrical resistivity information from the near-subsurface to



depths of about 3,000 m (about 9,800 ft) below land surface.
Resistivity is a measure of a material’s opposition to the flow
of electrical current and typically is measured in ohm-meters
(ohm-m). Because the electrical resistivity varies with rock
types and water content, this method may provide an indica-
tion of subsurface structure (strata, faults, and fractures) and
presence of groundwater (Simpson and Bahr, 2005). The
higher the porosity of a rock, the lower the resistivity, and the
higher the salinity of the saturating fluid, the lower the resis-
tivity of the rock. Resistivity values for common near-surface
earth materials vary by orders of magnitude, typically from

1 ohm-m or less for clays or alluvium saturated with high
salinity water to 1,000 ohm-m or more for dry carbonates or
crystalline rocks (Palacky, 1987). The resistivity of a rock is
also dependent on saturation, porosity, fracturing, conductiv-
ity of fluids within the rock, and mineral composition (Zohdy
and others, 1974). Saturated rocks have lower resistivity

than unsaturated and dry rocks. Resistivity of sedimentary
rocks, such as carbonates, typically ranges from 100 ohm-m
to 2,000 ohm-m, while shales or claystones usually range
from 1 ohm-m to 100 ohm-m, and sandstones can range from
20 ohm-m to 1,000 ohm-m. Igneous rocks, such as basalts,
can range from 200 ohm-m to 1,000 ohm-m (Sumner, 1976:
Nabighian and Macnae, 1987; Yungul, 1996).

Description of Method

CSAMT provides information on the electrical resistivity
of the subsurface along a receiver profile by measuring electric
and magnetic fields that are transmitted from a controlled
current at several frequencies a specified distance away (fig.
6). Grounded dipoles at the receiver site detect the electric
field parallel to the transmitter, and a magnetic-coil antenna
senses the magnetic field perpendicular to the transmitter (fig.
6). The ratio of the orthogonal- and horizontal-electric field
magnitudes to magnetic-field magnitudes yields the apparent
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Figure 6. Cartoon showing

the layout of a controlled
source audio-frequency
magnetotelluric survey
(modified from Zonge, 1992).
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Methods 1

resistivity, which is the true resistivity if the subsurface were
homogeneous and isotropic. CSAMT uses a remote, grounded
electric-dipole transmitter as an artificial signal source. The
transmitter source provides a stable signal, resulting in higher
precision and faster measurements than what can be obtained
from natural source audio-frequency magnetotellurics. Typi-
cally, the source for a CSAMT survey is separated from the
survey line by about a distance greater than three times the
depth of investigation. For this study the depth of investigation
was 300 to 500 m (fig. 6) (Zonge, 1992).

CSAMT measurements typically are made at frequency
ranges from about 1 to 8,000 Hertz in binary incremental
steps. The frequencies used for the surveys in this report were
2,4,8, 16,32, 64, 128, 256, 512, 1,024, 2,048, 4,096, and
8,192 Hertz. CSAMT measurements consist of orthogonal
and parallel components of the electric (£) and magnetic
(H) fields at a separation of 4 to 10 km (3.1 to 9.3 mi) from
the source (Sharma, 1997). CSAMT measurements can be
taken in a number of different arrays depending on the type
of information desired. This study used what is termed a
“reconnaissance” type of CSAMT array, which consists of
one electric (£ ) and one magnetic (Hy) component for each
measurement (Zonge, 1992), as opposed to a more involved
survey, which collects vector and tensor measurements by
measuring two electric-field components (E_and £ ) and
three magnetic-field components (#, H, and A ). Multiple
electric fields are measured concurrently during reconnais-
sance CSAMT surveys. This study used a six-channel receiver,
with the capability of simultaneously measuring five electric
fields for every one magnetic field. Because the magnetic field
does not change much over the same distance that substantial
electric-field changes occur, fewer magnetic-field measure-
ments are required. The magnetic-field measurement is used
to normalize the electric fields and calculate the apparent
resistivity and phase difference (Zonge, 1992). Grounded
dipoles at the receiver site measure the electric field parallel to
the transmitter (£ ), and a magnetic coil antenna measures the

Tranfgltter SOURCE
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perpendicular magnetic field (Hy). The ratio of the £_and Hy
magnitudes yields the apparent resistivity (eq. 1; Zonge, 1992;
Simpson and Bahr, 2005):

1 [T
””=§f{H} : M

y

where

p, is the apparent resistivity in ohm-meters,

fis the frequency in Hertz,

E is the parallel electrical-field strength, and

H, is the perpendicular magnetic-field strength.

The penetration of CSAMT into the subsurface and the

depth of investigation are determined by the skin depth (eq. 2):

§=503 \/E
f, (2)
where

S'is the skin depth in meters,

p, is the measured apparent ground resistivity in ohm-
meters, and

fis the signal frequency in Hertz (Zonge, 1992; Simpson
and Bahr, 2005).

The skin depth is the depth at which the amplitude of a
plane wave signal has dropped to 37 percent of its value at the
surface (Zonge, 1992). The skin depth is pertinent because
CSAMT data are most commonly interpreted using simplified
magnetotelluric (MT) equations based on the assumption that
the electric and magnetic fields can be approximated as plane
waves.

Unlike natural-source MT soundings, where the source
of telluric current (distant lightning strikes or atmospheric
interaction with solar winds) is considered infinitely distant
and nonpolarized, the CSAMT source is finite in distance
and distinctly polarized (Sharma, 1997). The separation, r,
between the transmitter and receiver for CSAMT surveys
must be greater than three skin depths for the current driven
into the ground to behave like plane waves (termed “far
field”’). When r is less than three skin depths at the frequency
being measured, the electric and magnetic fields no longer
behave as plane waves and become curved (termed “near
field”) such that the equation for apparent resistivity (eq. 1) no
longer applies. All data from this study used for modeling are
measured in the far field. The minimum distance between the
source and receiver was 5 km (3.1 mi), yielding an r of greater
than three skin depths (Zonge, 1992).

When the  between the receiver and transmitter is
greater than three skin depths, the equation for depth of inves-
tigation is (eq. 3; Zonge, 1992):

D=356 JE
! 3)

>

The depth of investigation (D) of a CSAMT survey
can range from 20 to 3,000 m (66 to 9,800 ft), depending on
the resistivity of the ground and the frequency of the signal.
Lower frequency signals have a greater depth of investigation
than higher frequency signals. Equations 2 and 3 are used as
a guideline or estimate for determining » and D, rather than a
firm rule. During data analysis plotting of the apparent resis-
tivity versus the frequency for a given set of soundings was
used to determine the lowest far-field frequency.

Data Collection and Analysis

CSAMT data were collected in the Big Chino subbasin
in Yavapai County, Arizona, from April 2015 to August 2017.
A Zonge GGT-30 geophysical transmitter powered by and
connected to a 25-kilowatt trailer-mounted generator and a
Zonge XMT-32 transmitter controller were used to transmit
the electrical source through a 1-kilometer-long (0.62 mi)
dipole. A Zonge GDP-32II multichannel geophysical receiver
was connected to six porous pot electrodes, which were filled
with copper-sulfate solution and arranged in 100-m (328-ft)
dipoles. A Zonge ANT6 high-gain mu-metal core magnetic
antenna was used to measure the Earth’s response to the trans-
mitted signal. Each CSAMT field measurement consisted of
one magnetic-field measurement (#/)) and five accompanying
electric-field measurements (£, ).

CSAMT data can be influenced by nearby metal conduc-
tors such as fences, pipes, underground wires, overhead or
buried power lines, and train tracks. Cultural interferences
such as these were noted in the Big Chino subbasin and
avoided when possible. Notch filters for 60, 180, 300, and
540 Hertz were used for all Big Chino subbasin CSAMT sur-
veys to reduce noise.

Twenty-one CSAMT lines were surveyed as a part of this
project—we assigned the designations AX, CG, CH, EW1,
EW2, EW3, FM, FME, FMW, GS6, GS8, GS16, K1, NS1,
NS2, NS3, NS4, NS5, WC, WCN, and WR (fig. 2)—for a
total of 100 km (62 mi) of survey in the Big Chino subbasin
in three geographic areas. Fourteen (66 km; 41mi) of the
CSAMT survey lines were located west of the town of Paul-
den and seven (34 km; 21 mi) survey lines were located east
of Paulden. The separation between transmitter and receiver
locations ranged from about 5 km to 15 km (3 to 9 mi). Global
positioning system (GPS) locations were marked for each
receiver station using a Garmin 62st handheld GPS unit.

Once the surveys were complete, data were processed
and analyzed using Zonge Engineering’s DATPRO suite of
software (Zonge Engineering, Tucson, Ariz.). Raw CSAMT
data were first averaged using Zonge’s CSAVG program.
Averaged data were reviewed for near-field and far-field
effects by plotting the apparent resistivity versus the frequency
(eq. 2) for a given set of soundings. The lowest far-field fre-
quency was determined based on these plots, and data below
that frequency were not used in the analysis. Typically for the
surveys in the Big Chino subbasin, 32 Hertz was the lowest



far-field frequency used for analysis. After determining the
lowest far-field frequency, 32 to 8,192 Hertz data were aver-
aged and entered into Zonge’s SCS2D software for inversions.
Topography and station locations were added to SCS2D using
a station file. A two-dimensional finite-element algorithm is
used by the modeling software, and the finite-element mesh is
draped over an along-line topographic profile. The averaged
data were inverted by Zonge’s SCS2D software to provide

a two-dimensional resistivity profile for each survey line.

The profiles were then examined for errors and adjusted as
appropriate. Additional adjustments were made to the inver-
sion models in areas where the subsurface geology was known
from lithologic logs of wells. For inversion purposes an
assumed one-dimensional “layer-cake” resistivity structure is
valid. Final inversion models presented in the “Results” sec-
tion of this report represent the best fit to subsurface resistiv-
ity. Data to support the conclusions of this report are available
from Macy and others (2018) on ScienceBase.

Results

The resistivity data collected along 21 CSAMT survey
lines were inverted and modeled to display as cross sections. A
total of 100 kilometers of linear survey lines were inverted into
resistivity profiles and are discussed in three geographic areas:
area | east of Paulden, area 2 west of but near the housing
development in Paulden, and area 3 west of Paulden
(fig. 2). CSAMT results in the Big Chino subbasin indicate a
more electrically conductive subsurface west of Paulden, sug-
gesting a deeper alluvial basin. East of Paulden, the surveys
mapped extents and thicknesses of shallow alluvial and basalt
cover over Paleozoic rocks, tops of crystalline rocks, and
important geologic structures such as the Big Chino Fault. For
interpretations on all geophysical plots, the label “fault” refers
to a fault identified on a geologic map, and “potential fault”
refers to an area where a fault has not been previously mapped
but could be located based on information from the geophysical
plot. Lithologic logs from selected wells and water levels were
also included on the interpretations of the geophysical plots.

A well was only included on the geophysical profile if it was

used for driller’s log information. Water levels were added to
interpretations of the geophysical profiles if a water level was
available from the general area of the geophysical profile.

Area 1

CSAMT lines NS1, NS2, NS3, NS4, EW1, EW2, and
EW3 were completed in area 1 (fig. 2). Lines NS1 to NS4
are a series of lines oriented north to south and lines EW1
to EW3 are oriented east to west. Overall, area 1 has com-
plex geology that includes layers of Quaternary and Tertiary
alluvium and basalt, and Paleozoic Supai Formation, Red-
wall Limestone, Martin Formation, Tapeats Sandstone, and
crystalline basement rocks (DeWitt and others, 2005; Blasch
and others, 2006). The electrical properties of basalt and lime-
stone can be difficult to differentiate because they are both
electrically resistive, especially when the limestone occurs
as a thin layer at the surface. Line NS1 is consistent with
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layered alluvium and Paleozoic sedimentary rocks overlying
Precambrian rocks (fig. 7). At the northern end of line NS1,
well MW-4b2 (B-18-01 19ADC) is located near station -225
(fig. 7). The lithologic log from the well shows that there is
interfingering alluvium and basalt in the upper 35 m and the
inverted resistivity section also supports this interpretation
of the shallow subsurface along line NS1. On the resistivity
plot of line NS1, the upper 35 m is material that’s 100 ohm-m
or less (green to yellow)(fig. 7). Below the upper layer is a
much more resistive layer, typically 250 ohm-m (orange), that
is consistent with Paleozoic Redwall Limestone and Martin
Formation (fig. 7). There is a 700 m section of line between
stations 1225 and 1925 that was skipped because of potential
interference from power lines (fig. 7). Conductive material
found at depth in this area is likely an artifact of the inversion
due to lack of station data. To the south of station 1925, from
elevation 1,165 to 1,200 m, the upper layer is alluvium and
basalt, and there is a resistor or bedrock high below 1,165 m
elevation that is stronger and more shallow than this line in
the north (fig. 7). Line NS2 is

similar to line NS1 and has a thin, less than 50 m thick,

100 ohm-m or less (green to yellow) layer at the surface,
which is consistent with alluvium and basalt (fig. 8). Below
that is a much more resistive layer, 250 ohm-m or greater,
consistent with Paleozoic Redwall Limestone and Martin
Formation (orange to red)(fig. 8). There are gaps in line

NS2 between stations 975 and 1325, and stations 1775 and
2225 because those areas were skipped due to power line
interference (fig. 8). Conductive material found at depth in
this area is likely an artifact of the inversion due to lack of
station data and has been blanked out for the interpretation.
South of station 1325 on line NS2 there is a bedrock high,
below an elevation of 1,150 m, similar to line NS1 (figs. 7
and 8). Although there are no mapped faults at the surface,
there appears to be a fault in the subsurface south of station
1925 on line NS1 and south of station 1325 on line NS2: the
crystalline basement rock shallows by more than 100 meters
almost instantaneously in this area (figs. 7 and 8). Both NS1
and NS2 show large resistivity increases to the north and
those could be attributed to dry Paleozoic limestone.

The inverted resistivity sections from lines NS3 and NS4
show four lithologic layers (figs. 9 and 10). The upper most
layer is moderately resistive, about 100 ohm-m or less (green
to yellow), and extends from the surface to less than 50 m
below land surface or 1,310 m elevation (figs. 9 and 10).
This uppermost layer could be alluvium and (or) basalt. The
second layer is a resistor, greater than 250 ohm-m (orange to
red), from about 1,375 m to 1,275m elevation on NS3 (fig.
9), and 1,310 m to 1,200 m elevation on NS4 (fig. 10). This
is interpreted to be the Paleozoic Redwall Limestone and
Martin Formation. From 1,275 m to 1,200 m elevation on
NS3 (fig. 9), and from 1,200 m to about 1,150 m elevation
on NS4 (fig.10), there’s a more conductive layer, less than 40
ohm-m (purple to green), that is consistent with the Tapeats
Sandstone. A strong resistor, greater than 250 ohm-m (orange
to red), is in the subsurface below an elevation of about 1,150
m on both lines, which is likely granite and schist bedrock
(figs. 9 and 10). There is a gap in line NS4 from station 2950
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Figure 8. North to south cross section of controlled source audio-frequency magnetotelluric (CSAMT)
smooth model inversion results for line NS2 (A). B, Interpretations of inversion results for line NS2. Diagonal
line pattern denotes areas of power line interference. C, Geologic map of area surrounding line NS2 (simplified
from DeWitt and others, 2008). D, Location map showing survey line NS2 and CSAMT profile, with NS2 in black.
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with NS3in black.

to 4050, which is the area of the Verde River (fig. 10). The
geology north and south of the Verde River along line NS4 is
different; the large resistor below 1,150 m north of the Verde
River is found at an elevation of about 1,250 south of the Verde
River (figs. 10). This change along the river corridor suggests
that there is a subsurface fault somewhere in the area of the
Verde River that uplifts the granite and schist basement rock
north of the Verde by about 100 to 150 m relative to the south
side of the river.

MDrm
0 500 1,000 1,500 FEET
0 100 200 300 METERS EXPLANATION
Model resistivity, C Geologic unit
in ohm-meters Quaternary fanglomerates, colluvim,
A B 630,950 and sedimentary breccia
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' terrace gravels
1,000 g
Tertiary basalt
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158 - Devonian Martin Formation
63 Mississippian Redwall Limestone
25 and Devonian Martin Formation,
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9 — Fault—Bar and ball on downthrown
: side
0 —— Quaternary fault—Well constrained
(U.S. Geological Survey and
Arizona Geological Survey, 2018)
———- Ring dike—Buried, location
approximate
NS3

CSAMT survey line

Lines EW1 to EW3 are similar to the NS lines in that
they show four distinct lithologic layers. The uppermost layer
extends from the surface to less than 50 m below land surface
or about 1,320 m elevation and is moderately resistive, about
100 ohm-m or less (green to yellow) (figs. 11-13). This upper-
most layer could be alluvium and (or) basalt, and in the case of
EW?2 it’s Supai Formation because it’s mapped at the surface.
The second layer is a resistor, greater than 250 ohm-m (orange
to red), from about 1,320 m elevation to 1,220 m elevation
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and is interpreted as Paleozoic Redwall Limestone and Martin
Formation (figs. 11-13). From 1,220 m to about 1,150 m
elevation, there’s a more conductive layer, less than 40 ohm-m
(purple to green), that is consistent with the Tapeats Sand-
stone (figs. 11-13). A strong resistor, greater than 250 ohm-m
(orange to red), is in the subsurface below an elevation of
about 1,150 m which represents granite and schist bedrock
(figs. 11, 12, and 13).

On line EW?2 at station 705, the lithologic log of well
MW-4b1 maps the subsurface to a depth of 146 m. The log
shows that the Supai Formation extends to about 20 m below
land surface, and that the Paleozoic Redwall Limestone occurs
from about 20 to 70 m below land surface (fig. 12).

Below the Redwall Limestone is the Martin Formation from
about 70 m depth to 146 m below land surface. The Supai
Formation is represented on line EW2 as less than 100 ohm-m
(green to yellow) at the surface to an elevation of 1,320 m
(less than 50 m below the surface)(fig. 12). Below this is a
layer with greater than 250 ohm-m (yellow to red) below
which is consistent with Redwall Limestone and Martin For-
mation (fig. 12). There is a slightly more conductive unit, less
than 40 ohm-m (purple to green), below the Redwall Lime-
stone at an elevation below 1,230 m, which probably repre-
sents the Tapeats Sandstone (fig. 12). Resistive material below
the conductor, greater than 250 ohm-m, probably represents
granite and schist basement rock (fig. 12).
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East to west cross section of controlled source audio-frequency magnetotelluric (CSAMT) smooth model inversion

results for line EW3 (A). B, Interpretations of inversion results for line EW3. C, Geologic map of area surrounding line EW3 (simplified
from DeWitt and others, 2008). D, Location map showing survey line EW3 and CSAMT profile, with EW3 in black.

Cultural interference or faulting are evident from anoma-
lies in the EW profiles. Anomalies on line EW1 are found at sta-
tions 275, 515 to 615, 635 to 655, and 685. There is a road and
a pipeline at station 275 causing some interference and stations
515 to 615 correspond to the area of faults mapped on line NS1
(fig. 11). Stations 635 to 655 are where line EW1 crosses a road,
and there appears to also be a pipeline acting as a conductor.
Line EW2 also has a number of vertical irregularities, particu-
larly at stations 325, 345, 425, 455, 495, 525, 625, 715, 745, 765
to 865, 945 to 955, and 1025 (fig. 12). Some of these vertical
features could be faults, but they could also indicate cultural

interference, or they could also be artifacts from the inversion,
depending on the horizontal and vertical smoothing coefficients
chosen for the inversion. Stations 325 and 345 resemble features
that would be produced from buried metal pipes (fig. 12). Sta-
tion 455 is where line EW2 crosses a power line and there’s a
road and a buried pipeline near station 525 that could be produc-
ing interference (fig. 12). A road crosses line EW?2 at station 715
and is most likely the cause of the irregularity at that station (fig.
12). Line EW2 crosses another road at station 1035 (fig. 12).
Line EW3 also has areas of potential cultural interference or
faulting, at stations 195, 255, 285, 345, and 455 to 485 (fig. 13).



Area 2

Area 2 encompasses CSAMT lines GS6, GS8, GS16,
FM, FME, FMW, and NS5. Area 2 is a transition between area
1, where alluvium is thin to nonexistent, and area 3, where
alluvium is so deep that it exceeds the depth of our profiles.
Lines in area 2 are generally more conductive than in area 1
and have some highly resistive units toward the bottom of the
profiles that indicate presence of Paleozoic sedimentary rocks.
Depths of investigation in area 2 are generally a few hundred
meters. The average alluvium thickness in area 2 is about 100
to 200 m. Some of the lines in area 2 are near the basin margin
where the alluvium is thinnest.

A

NORTHEAST
150 350
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Survey lines GS6, GS8, and GS16 are on land adjacent
to or lands leased by the Gunsite Academy near Paulden.
Inverted resistivity modeling of these three lines indicates that
the subsurface here has two main layers: an upper layer of
material, 1,000 ohm-m or less (green and purple in fig. 14-16)
at an elevation above 1,250 m, and a lower layer below 1,250
m elevation of resistive material, greater than 100 ohm-m (yel-
low-red in figs. 14—-16). The two layers are interpreted to be
alluvium and basalt in the upper layer and Redwall Limestone
and Martin Formation in the lower layer. The southwest end of
line GS8, starting at station 4450, does not appear to show two
layers, but instead is a single layer of 40 to 60 ohm-m material
(fig. 15). There are two mapped faults to the northwest and
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above NAVD88

Elevation, in meters

Figure 14. Northeastto
southwest cross section of
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(CSAMT) smooth model
inversion results for line

GS6 (A). B, Interpretations
of inversion results for line
GS6. C, Geologic map of
area surrounding line GS6
(simplified from DeWitt and
others, 2008). D, Location map
showing survey line GS6 and

CSAMT profile, with GS6 in
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southeast of line GS8 that project into station 4450 (fig. 15), Black Mesa, and are primarily comprised of conductive mate-
as well as a previously mapped fault between stations 3650 rial, less than 20 ohm-m (purple to green), with some resis-
and 3750 (fig. 15) (DeWitt and others, 2008). Mapped faults tive material, greater than 200 ohm-m, at the bottom of the
are present on line GS16 at station 950, and the resistivity plot  northeast side of lines FM and FME (figs. 17, 18, and 19). The

shows a distinct anomaly at station 950 (fig. 16). There also upper conductive layer is consistent with alluvial basin fill and
appears to be an unmapped fault near stations 2150 and 2250 the lower unit consistent with Paleozoic Martin and Redwall
on GS16 (fig. 16). Limestones. Lines FM and FME intersect the Big Chino
Lines FM, FME, and FMW are in the area of “Feather Fault and other faults associated with it. The resistive mate-
Mountain,” a locally named hill at the southeast end of Big rial seen in the inversion model is consistent with Paleozoic
A
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Figure 16. Northeast to southwest cross section of controlled source audio-frequency magnetotelluric
(CSAMT) smooth model inversion results for line GS16 (A). B, Interpretations of inversion results for line GS16.
C, Geologic map of area surrounding line GS16 (simplified from DeWitt and others, 2008). D, Location map
showing survey line GS16 and CSAMT profile, with GS16 in black.
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limestones juxtaposed against alluvial basin fill. On line FM,
the Big Chino Fault is mapped at about station 950 (fig. 17).
This normal fault is observed in the subsurface on line FM

irregularity closer to station 1750 than 1450, but based on the
inversion results there is a potential fault at station 2450 (fig.

from about station 650 to 2150 where conductive (purple to 18). The subsurface profile beneath line FMW is relatively

green) material overlies resistive (yellow to red) material (fig.
17). On line FME, there are two areas where mapped faults

homogenous with a conductive layer at the surface, less than

cross the profile, at station 150 and station 1450, and one m elevation (fig. 19). A second, more conductive, layer can

area where a mapped fault projects into the profile, at station

Elevation, in meters

Elevation, in meters

be found below 1,300 m with resistivity values less than 10
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_FM_ CSAMT survey line
Figure 17. Northeast to southwest cross section of controlled source audio-frequency magnetotelluric (CSAMT)
smooth model inversion results for line FM (A). B, Interpretations of inversion results for line FM. C, Geologic map
of area surrounding line FM (simplified from DeWitt and others, 2008). D, Location map showing survey line FM and
CSAMT profile, with FM in black.

2450 (fig. 18). The resistivity profile from line FME shows an

20 ohm-m (purple to green), that extends down to about 1,300



ohm-m (purple) (fig. 19). This lower layer, with very conduc-
tive properties, shows the extent and thickness of the silt and
clay in the area.

Line NS5 is south of the Feather Mountain lines (FM,
FME, and FMW) and intersects line FMW at NS5 station
1850 and FMW station 4450 (figs. 19 and 20). Line NS5 is
two line segments that are offset, but combined into a single
line for inversion. Line NS5 is similar to line FMW in resistiv-
ity structure, being relatively homogenous with a conductive
layer at the surface, less than 20 ohm-m (purple to green), that
extends down to about 1,300 m elevation (fig. 20). A second,
more conductive, layer below 1,300 m has resistivity values

A
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less than 10 ohm-m (purple, fig. 20). These two layers are
consistent with alluvial basin fill, where the more conductive
layer is basin fill with higher clay or silt content. An anomaly
near stations 1850 and 1950 indicates that some resistive
material (yellow) is adjacent to conductive material (purple to
blue), which could be a buried fault (fig. 20). That same resis-
tive material (yellow) in line NS5 can be seen in line FMW at
station 4450 (figs. 19 and 20). In the southern part of line NS5,
between station 5050 and 6450, there is resistive material,
greater than 20 ohm-m (green to yellow), at the bottom of the
plot below 1,200 m elevation, which is interpreted as Redwall
Limestone/Martin Formation (fig. 20).
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Figure 18. Northeast to southwest cross section of controlled source audio-frequency magnetotelluric (CSAMT) smooth
model inversion results for line FME (A). B, Interpretations of inversion results for line FME. C, Geologic map of area
surrounding line FME (simplified from DeWitt and others, 2008). D, Location map showing survey line FME and CSAMT

profile, with FME in black.
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Area 3

Area 3 encompasses CSAMT lines AX, K1, WC, WCN,
CG, CH, and WR. The geology of area 3 is primarily alluvial
basin fill, specifically Tertiary to Quaternary sedimentary
rocks, and Tertiary basalt. The rocks in area 3 are generally
more conductive than in areas 1 and 2, and have few highly
resistive units that indicate the presence of Paleozoic sedimen-
tary rocks. Because of this more conductive material, depths
of investigation are generally shallower than areas 1 and 2, to
only about 300 m below land surface.

Line AX follows the axis of the Big Chino subbasin and
is 20 km long, the longest of any of the CSAMT profiles (fig.
21). Inversion results from line AX show conductive mate-
rial across the entire profile and that most of the material is
less than 20 ohm-m (purple to blue-green in fig. 21). There’s
a strong conductor, less than 5 ohm-m, in the center of the
profile from about station 550 to 8950, at an elevation between
1,150 and 1,250 m (fig. 21). The strong conductor appears
to dip to the northwest, and so northwest of station 8950 it is
below the bottom of the profile at 1,100 m elevation.

Lines K1, WC, and WCN are located on the southwest
side of the Big Chino subbasin and are mainly underlain by
conductive material, less than 20 ohm-m (purple to blue-green
in figs. 22, 23, and 24). Lines K1 and WC are very similar,
having primarily material less than 20 ohm-m throughout
the profile (figs. 22 and 23). Both lines show a resistor in the
southwest portion of the plot at an elevation of about 1,250
m (figs. 22 and 23). On line K1 the resistor (yellow to red,
fig. 22) is between stations 50 and 1750, and on line WC the
resistor (yellow) is between stations 50 and 450 (fig. 23). Line
WCN is unique among these three lines, having layers of
resistive material, 600 to 4,000 ohm-m (yellow to red in fig.
24), interbedded within the conductive, 20 ohm-m material
(blue-green to purple, fig. 24). The Paleozoic Martin For-
mation outcrops just north and west of line WCN and may

be contributing to some of the resistive signal. Line WCN
has about 100 to 150 m of conductive material, less than 20
ohm-m (purple to green, fig. 24), at the surface. Below the
conductor is a strong resistor, in some areas greater than 1,000
ohm-m (yellow to red, fig. 24), ranging in thickness from 100
to 300 m at an elevation of about 1,200 m (fig. 24). A moder-
ate conductor, below an elevation of 1,100 m, has resistivity
values less than 40 ohm-m (fig. 24). The deepest part of the
profile along line WCN consists of a strong resistor at an
elevation below 800 m (fig. 24). There are also a number of
features within line WCN that resemble faults. Between sta-
tions 650 and 850, at station 1550, and at station 3550 there
are significant breaks in the resistive layer that could be faults
(fig. 24).

Lines CG, CH and WR are similar to one another and
mainly comprised of conductive material less than 20 ohm-m
(purple to blue-green, figs. 25, 26, and 27). These three
CSAMT lines are located on the northeast side of the Big
Chino subbasin. The inverted section profiles suggest that
there are four distinct subsurface layers in this area, except
around line WR, which only shows three layers. The first layer
is at the surface, 16 ohm-m or less (blue-green in figs. 25-27),
and is 50 m thick. The second layer is a more conductive, 6
ohm-m or less (purple, figs. 25-27), and is also about 50 m
thick. The third layer is the most resistive of these lines, about
40 ohm-m (yellow-green, figs. 25-27), and is about 50 m
thick. The bottom layer is a strong conductor, 6 ohm-m or less
(purple, figs. 25 and 26). The lithologic log from well CVM _1
indicates that basalt is present at depth, and so the third layer,
of 40 ohm-m material, could represent the basalt in the basin.

Line WR is distinct from lines CG and CH because there
is a resistor at depth, about 1,250 m elevation, that occurs
between stations 3000 and 3500 (fig. 27). Line WR also
crosses the Big Chino Fault at station 4750, and in the inver-
sion profile the fault is evident where conductive and resistive
material is juxtaposed (fig. 27).
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Elevation, in meters above NAVD88

Elevation, in meters above NAVD88
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Figure 24. Southwest to northeast cross section of controlled source audio-frequency magnetotelluric (CSAMT)
smooth model inversion results for line WCN (A). B, Interpretations of inversion results for line WCN. C, Geologic
map of area surrounding line WCN (simplified from DeWitt and others, 2008). D, Location map showing survey line
WCN and CSAMT profile, with WCN in black.
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Figure 26. Southwest to northeast cross section of controlled source audio-frequency magnetotelluric (CSAMT)
smooth model inversion results for line CH (A). B, Interpretations of inversion results for line CH. Water-level data

are from lithologic logs of wells B_19_03_19CBD and B_19_03_19AAA. C, Geologic map of area surrounding line CH
(simplified from DeWitt and others, 2008). D, Location map showing survey line CH and CSAMT profile, with CH in black.
Boxes below water level symbols signify that the well has no lithologic log, but has water level data.
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Summary

The main water-bearing stratigraphic unit in the Big
Chino subbasin near Paulden is Tertiary alluvial-fill sediments.
The Devonian Martin Formation (dolomite, limestone, sandy
siltstone) also yields some water to wells near Drake, a little
northeast of Big Chino subbasin. The Mississippian Redwall
Limestone, considered highly permeable, provides water to
wells in the Paulden area, and to wells east of the Big Chino
subbasin.

We used CSAMT, a low-impact, non-intrusive, electrical-
resistance geophysical technique, to evaluate the subsurface
stratigraphy of the Big Chino subbasin near Paulden. Specifi-
cally, the purpose of the CSAMT surveys was to improve the
conceptual model of the aquifer by constraining the basin
geometry and identifying stratigraphic units. Twenty-one
electromagnetic surveys were conducted in three designated
geographic areas of the basin for a total of 100 km (62.1 mi)
of CSAMT survey lines. Fourteen survey lines were west of
the town of Paulden and the other seven were east of Paulden.
Data were inverted to provide a two-dimensional resistivity
profile for each survey line and final inversion models repre-
sent the best fit to measured data.

CSAMT lines west of Paulden are consistent with the
presence of thicker alluvial basin deposits that range from 100
m thick to a few hundred meters thick. CSAMT lines east of
Paulden are consistent with thinner alluvial and basalt deposits
overlying Paleozoic Martin Formation and Redwall Lime-
stone, Tapeats Sandstone, and Precambrian granite and schist.

Electromagnetic surveys were conducted in three areas
in the Big Chino Subbasin near Paulden, Arizona: area 1 east
of Paulden, area 2 west of but near the housing development
in Paulden, and area 3 west and northwest of Paulden (fig.

2). The results of the CSAMT surveys indicate that area 1

has complex geology that includes layers of Quaternary and
Tertiary alluvium and basalt near the surface, overlying Paleo-
zoic Supai Formation, Redwall Limestone, Martin Formation,
Tapeats Sandstone, and Precambrian crystalline basement
rocks (DeWitt and others, 2005; Blasch and others, 20006).

The electrical properties of basalt and Paleozoic limestone can
be difficult to differentiate because they are both electrically
resistive, especially when the limestone occurs as a thin layer
at the surface. Area 2 is a transition between area 1, where
alluvium is thin to nonexistent, and area 3, where alluvium is
so deep that it exceeds the depth of our profiles. The subsur-
face rocks in area 2 are generally more conductive than in area
1, and there are some highly-resistive units towards the bottom
of the profiles that indicate the presence of Paleozoic sedimen-
tary rocks. Depths of investigation in area 2 are generally a
few hundred meters. The average alluvium thickness in area 2
is about 100 to 200 m. Some of the lines in area 2 are near the
basin margin where the alluvium is thinnest. The subsurface
rocks in area 3 are generally more conductive than in areas 2
and 3, and there are few highly resistive units that indicate the
presence of Paleozoic sedimentary rocks. Because of this more
conductive material, depths of investigation are generally
more shallow, to about 300 m below land surface.
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